深入理解RocketMQ的设计

技术架构

http://static.cyblogs.com/rocketmq_architecture_1.jpgRocketMQ架构上主要分为四部分,如上图所示:

  • Producer:消息发布的角色,支持分布式集群方式部署。Producer通过MQ的负载均衡模块选择相应的Broker集群队列进行消息投递,投递的过程支持快速失败并且低延迟。
  • Consumer:消息消费的角色,支持分布式集群方式部署。支持以push推,pull拉两种模式对消息进行消费。同时也支持集群方式和广播方式的消费,它提供实时消息订阅机制,可以满足大多数用户的需求。
  • NameServerNameServer是一个非常简单的Topic路由注册中心,其角色类似Dubbo中的zookeeper,支持Broker的动态注册与发现。主要包括两个功能:Broker管理,NameServer接受Broker集群的注册信息并且保存下来作为路由信息的基本数据。然后提供心跳检测机制,检查Broker是否还存活;路由信息管理,每个NameServer将保存关于Broker集群的整个路由信息和用于客户端查询的队列信息。然后ProducerConumser通过NameServer就可以知道整个Broker集群的路由信息,从而进行消息的投递和消费。NameServer通常也是集群的方式部署,各实例间相互不进行信息通讯。Broker是向每一台NameServer注册自己的路由信息,所以每一个NameServer实例上面都保存一份完整的路由信息。当某个NameServer因某种原因下线了,Broker仍然可以向其它NameServer同步其路由信息,Producer,Consumer仍然可以动态感知Broker的路由的信息。
  • BrokerServerBroker主要负责消息的存储、投递和查询以及服务高可用保证,为了实现这些功能,Broker包含了以下几个重要子模块。
  • Remoting Module:整个Broker的实体,负责处理来自clients端的请求。
  • Client Manager:负责管理客户端(Producer/Consumer)和维护ConsumerTopic订阅信息
  • Store Service:提供方便简单的API接口处理消息存储到物理硬盘和查询功能。
  • HA Service:高可用服务,提供Master BrokerSlave Broker之间的数据同步功能。
  • Index Service:根据特定的Message key对投递到Broker的消息进行索引服务,以提供消息的快速查询。

RocketMQ 网络部署特点

  • NameServer是一个几乎无状态节点,可集群部署,节点之间无任何信息同步。
  • Broker部署相对复杂,Broker分为MasterSlave,一个Master可以对应多个Slave,但是一个Slave只能对应一个MasterMasterSlave 的对应关系通过指定相同的BrokerName,不同的BrokerId 来定义,BrokerId为0表示Master,非0表示SlaveMaster也可以部署多个。每个BrokerNameServer集群中的所有节点建立长连接,定时注册Topic信息到所有NameServer。 注意:当前RocketMQ版本在部署架构上支持一MasterSlave,但只有BrokerId=1的从服务器才会参与消息的读负载。
  • ProducerNameServer集群中的其中一个节点(随机选择)建立长连接,定期从NameServer获取Topic路由信息,并向提供Topic 服务的Master建立长连接,且定时向Master发送心跳。Producer完全无状态,可集群部署。
  • ConsumerNameServer集群中的其中一个节点(随机选择)建立长连接,定期从NameServer获取Topic路由信息,并向提供Topic服务的MasterSlave建立长连接,且定时向MasterSlave发送心跳。Consumer既可以从Master订阅消息,也可以从Slave订阅消息,消费者在向Master拉取消息时,Master服务器会根据拉取偏移量与最大偏移量的距离(判断是否读老消息,产生读I/O),以及从服务器是否可读等因素建议下一次是从Master还是Slave拉取。

结合部署架构图,描述集群工作流程:

  • 启动NameServerNameServer起来后监听端口,等待BrokerProducerConsumer连上来,相当于一个路由控制中心。
  • Broker启动,跟所有的NameServer保持长连接,定时发送心跳包。心跳包中包含当前Broker信息(IP+端口等)以及存储所有Topic信息。注册成功后,NameServer集群中就有TopicBroker的映射关系。
  • 收发消息前,先创建Topic,创建Topic时需要指定该Topic要存储在哪些Broker上,也可以在发送消息时自动创建Topic
  • Producer发送消息,启动时先跟NameServer集群中的其中一台建立长连接,并从NameServer中获取当前发送的Topic存在哪些Broker上,轮询从队列列表中选择一个队列,然后与队列所在的Broker建立长连接从而向Broker发消息。
  • ConsumerProducer类似,跟其中一台NameServer建立长连接,获取当前订阅Topic存在哪些Broker上,然后直接跟Broker建立连接通道,开始消费消息。

事务消息

Apache RocketMQ在4.3.0版中已经支持分布式事务消息,这里RocketMQ采用了2PC的思想来实现了提交事务消息,同时增加一个补偿逻辑来处理二阶段超时或者失败的消息,如下图所示。

http://static.cyblogs.com/rocketmq_design_10.png

上图说明了事务消息的大致方案,其中分为两个流程:正常事务消息的发送及提交、事务消息的补偿流程。

1.事务消息发送及提交:

(1) 发送消息(half消息)。

(2) 服务端响应消息写入结果。

(3) 根据发送结果执行本地事务(如果写入失败,此时half消息对业务不可见,本地逻辑不执行)。

(4) 根据本地事务状态执行Commit或者Rollback(Commit操作生成消息索引,消息对消费者可见)

2.补偿流程:

(1) 对没有Commit/Rollback的事务消息(pending状态的消息),从服务端发起一次“回查”

(2) Producer收到回查消息,检查回查消息对应的本地事务的状态

(3) 根据本地事务状态,重新Commit或者Rollback

其中,补偿阶段用于解决消息Commit或者Rollback发生超时或者失败的情况。

RocketMQ事务消息设计

1.事务消息在一阶段对用户不可见

在RocketMQ事务消息的主要流程中,一阶段的消息如何对用户不可见。其中,事务消息相对普通消息最大的特点就是一阶段发送的消息对用户是不可见的。那么,如何做到写入消息但是对用户不可见呢?RocketMQ事务消息的做法是:如果消息是half消息,将备份原消息的主题与消息消费队列,然后改变主题为RMQ_SYS_TRANS_HALF_TOPIC。由于消费组未订阅该主题,故消费端无法消费half类型的消息,然后RocketMQ会开启一个定时任务,从Topic为RMQ_SYS_TRANS_HALF_TOPIC中拉取消息进行消费,根据生产者组获取一个服务提供者发送回查事务状态请求,根据事务状态来决定是提交或回滚消息。

在RocketMQ中,消息在服务端的存储结构如下,每条消息都会有对应的索引信息,Consumer通过ConsumeQueue这个二级索引来读取消息实体内容,其流程如下:

http://static.cyblogs.com/rocketmq_design_11.png

RocketMQ的具体实现策略是:写入的如果事务消息,对消息的Topic和Queue等属性进行替换,同时将原来的Topic和Queue信息存储到消息的属性中,正因为消息主题被替换,故消息并不会转发到该原主题的消息消费队列,消费者无法感知消息的存在,不会消费。其实改变消息主题是RocketMQ的常用“套路”,回想一下延时消息的实现机制。

2.Commit和Rollback操作以及Op消息的引入

在完成一阶段写入一条对用户不可见的消息后,二阶段如果是Commit操作,则需要让消息对用户可见;如果是Rollback则需要撤销一阶段的消息。先说Rollback的情况。对于Rollback,本身一阶段的消息对用户是不可见的,其实不需要真正撤销消息(实际上RocketMQ也无法去真正的删除一条消息,因为是顺序写文件的)。但是区别于这条消息没有确定状态(Pending状态,事务悬而未决),需要一个操作来标识这条消息的最终状态。RocketMQ事务消息方案中引入了Op消息的概念,用Op消息标识事务消息已经确定的状态(Commit或者Rollback)。如果一条事务消息没有对应的Op消息,说明这个事务的状态还无法确定(可能是二阶段失败了)。引入Op消息后,事务消息无论是Commit或者Rollback都会记录一个Op操作。Commit相对于Rollback只是在写入Op消息前创建Half消息的索引。

3.Op消息的存储和对应关系

RocketMQ将Op消息写入到全局一个特定的Topic中通过源码中的方法—TransactionalMessageUtil.buildOpTopic();这个Topic是一个内部的Topic(像Half消息的Topic一样),不会被用户消费。Op消息的内容为对应的Half消息的存储的Offset,这样通过Op消息能索引到Half消息进行后续的回查操作。

http://static.cyblogs.com/rocketmq_design_12.png

4.Half消息的索引构建

在执行二阶段Commit操作时,需要构建出Half消息的索引。一阶段的Half消息由于是写到一个特殊的Topic,所以二阶段构建索引时需要读取出Half消息,并将Topic和Queue替换成真正的目标的Topic和Queue,之后通过一次普通消息的写入操作来生成一条对用户可见的消息。所以RocketMQ事务消息二阶段其实是利用了一阶段存储的消息的内容,在二阶段时恢复出一条完整的普通消息,然后走一遍消息写入流程。

5.如何处理二阶段失败的消息?

如果在RocketMQ事务消息的二阶段过程中失败了,例如在做Commit操作时,出现网络问题导致Commit失败,那么需要通过一定的策略使这条消息最终被Commit。RocketMQ采用了一种补偿机制,称为“回查”。Broker端对未确定状态的消息发起回查,将消息发送到对应的Producer端(同一个Group的Producer),由Producer根据消息来检查本地事务的状态,进而执行Commit或者Rollback。Broker端通过对比Half消息和Op消息进行事务消息的回查并且推进CheckPoint(记录那些事务消息的状态是确定的)。

值得注意的是,rocketmq并不会无休止的的信息事务状态回查,默认回查15次,如果15次回查还是无法得知事务状态,rocketmq默认回滚该消息。

回溯消费

回溯消费是指 Consumer 已经消费成功的消息,由于业务上需求需要重新消费,要支持此功能,Broker 在吐 Consumer 投递成功消息后,消息仍然需要保留。并且重新消费一般是按照时间维度,例如由于 Consumer 系统故障, 恢复后需要重新消费 1 小时前的数据,那么Broker 要提供一种机制,可以按照时间维度来回退消费进度。

RocketMQ 支持按照时间回溯消费,时间维度精确到毫秒,可以向前回溯,也可以向后回溯。

消息堆积

消息中间件的主要功能是异步解耦,还有个重要功能是挡住前端的数据洪峰,保证后端系统的稳定性,这就要求消息中间件具有一定的消息堆积能力,消息堆积分以下两种情况:

(1). 消息堆积在内存 Buffer,一旦超过内存 Buffer,可以根据一定的丢弃策略来丢弃消息,如 CORBA Notification 规范中描述。适合能容忍丢弃消息的业务,这种情况消息的堆积能力主要在于内存 Buffer 大小,而且消息堆积后,性能下降不会太大,因为内存中数据多少对于对外提供的访问能力影响有限。

Broker 的 Buffer 通常指的是 Broker 中一个队列的内存 Buffer 大小,这类 Buffer 通常大小有限,如果 Buffer 满 了以后怎么办? 下面是 CORBA Notification 规范中处理方式:

  • RejectNewEvents 拒绝新来的消息,向Producer返回RejectNewEvents错误码。

  • 按照特定策略丢弃已有消息

    • a) AnyOrder - Any event may be discarded on overflow. This is the default setting for this property.
    • b) FifoOrder - The first event received will be the first discarded.
    • c) LifoOrder - The last event received will be the first discarded.
    • d) PriorityOrder - Events should be discarded in priority order, such that lower priority

(2). 消息堆积到持久化存储系统中,例如 DB,KV 存储,文件记录形式。 当消息不能在内存 Cache 命中时,要不可避免的访问磁盘,会产生大量读 IO,读 IO 的吞吏量直接决定了消息堆积后的访问能力。 评估消息堆积能力主要有以下四点:

  • 消息能堆积多少条,多少字节?即消息的堆积容量。

  • 消息堆积后,收消息的吞吏量大小,是否会受堆积影响?

  • 消息堆积后,正常消费的 Consumer 是否会受影响?

  • 消息堆积后,访问堆积在磁盘的消息时,吞吐量有多大?

零拷贝原理

Consumer 消费消息过程,使用了零拷贝,零拷贝包含以下两种方式 :

使用 mmap + write 方式

http://static.cyblogs.com/浅析零拷贝技术-2.png

优点:即使频繁调用,使用小块文件传输,效率也很高

缺点:不能很好的利用 DMA 方式,会比 sendfile 多消耗 CPU,内存安全性控制复杂,需要避免 JVM Crash 问题。

使用 sendfile 方式

http://static.cyblogs.com/浅析零拷贝-03.jpg

优点:可以利用 DMA 方式,消耗 CPU 较少,大块文件传输效率高,无内存安全新问题。

缺点:小块文件效率低于mmap 方式,只能是BIO方式传输,不能使用 NIO。 RocketMQ 选择了第一种方式,mmap+write 方式,因为有小块数据传输的需求,效果会比 sendfile 更好。

参考地址

如果大家喜欢我的文章,可以关注个人订阅号。欢迎随时留言、交流。如果想加入微信群的话一起讨论的话,请加管理员简栈文化-小助手(lastpass4u),他会拉你们进群。

简栈文化服务订阅号